Summary of python's PyMongo usage
- 2020-06-01 10:16:17
- OfStack
What is PyMongo
PyMongo is the driver that enables the python program to use the Mongodb database, written using python.
The installation
Environment: Ubuntu 14.04+ python2.7 +MongoDB 2.4
Go to the official website to download the package, and click the link to open the address. Unzipped and entered, installed using python setup.py install
Or install pip-m install pymongo with pip
The basic use
Create a connection
import pymongo
client = pymongo.MongoClient('localhost', 27017)
Or you could do this
import pymongo
client = MongoClient('mongodb://localhost:27017/')
Connect to database
db = client.mydb
# or
db = client['mydb']
The connection to gather
Aggregation is the equivalent of a table in a relational database
collection = db.my_collection
# or
collection = db['my_collection']
View all aggregation names under the database
db.collection_names()
Insert records
collection.insert({"key1":"value1","key2","value2"})
Delete records
Delete all
collection.remove()
Conditional deletion
collection.remove({"key1":"value1"})
Update record
collection.update({"key1": "value1"}, {"$set": {"key2": "value2", "key3": "value3"}})
Query log
Query 1 record: find_one() returns the first record without any parameters. Returns a conditional lookup with a parameter
collection.find_one()
collection.find_one({"key1":"value1"})
Query multiple records: find() returns all records without parameters, and returns them by conditional search with parameters
collection.find()
collection.find({"key1":"value1"})
View multiple records gathered
import pymongo
client = MongoClient('mongodb://localhost:27017/')
0
View the total number of clustered records
import pymongo
client = MongoClient('mongodb://localhost:27017/')
1
Query result sorting
Sort on a single column
import pymongo
client = MongoClient('mongodb://localhost:27017/')
2
Sort on multiple columns
collection.find().sort([("key1", pymongo.ASCENDING), ("key2", pymongo.DESCENDING)])
Example 1:
#!/usr/bin/env python
#coding:utf-8
# Author: --<qingfengkuyu>
# Purpose: MongoDB The use of
# Created: 2014/4/14
#32 A version of a bit can only be stored at most 2.5GB The data ( NoSQLFan : the maximum file size is 2G , recommended production environment 64 A)
import pymongo
import datetime
import random
# Create a connection
conn = pymongo.Connection('10.11.1.70',27017)
# Connect to database
db = conn.study
#db = conn['study']
# Print all aggregation names and join the aggregation
print u' All gathered :',db.collection_names()
posts = db.post
#posts = db['post']
print posts
# Insert records
new_post = {"AccountID":22,"UserName":"libing",'date':datetime.datetime.now()}
new_posts = [{"AccountID":22,"UserName":"liuw",'date':datetime.datetime.now()},
{"AccountID":23,"UserName":"urling",'date':datetime.datetime.now()}]# Each record is inserted at a different time 1 sample
posts.insert(new_post)
#posts.insert(new_posts)# Batch insert multiple pieces of data
# Delete records
print u' Delete specified record :\n',posts.find_one({"AccountID":22,"UserName":"libing"})
posts.remove({"AccountID":22,"UserName":"libing"})
# Modify the records in the aggregation
posts.update({"UserName":"urling"},{"$set":{'AccountID':random.randint(20,50)}})
# Query records and count the number of records
print u' The total record is: ',posts.count(),posts.find().count()
print u' Query a single record :\n',posts.find_one()
print posts.find_one({"UserName":"liuw"})
# Query all records
print u' Query multiple records :'
#for item in posts.find():# Query all records
#for item in posts.find({"UserName":"urling"}):# Query specified record
#for item in posts.find().sort("UserName"):# Query results based on UserName Sort, by default, in ascending order
#for item in posts.find().sort("UserName",pymongo.ASCENDING):# Query results based on UserName Sorting, ASCENDING For the ascending ,DESCENDING For the descending order
for item in posts.find().sort([("UserName",pymongo.ASCENDING),('date',pymongo.DESCENDING)]):# Query results are sorted by multiple columns
print item
# View the performance of query statements
#posts.create_index([("UserName", pymongo.ASCENDING), ("date", pymongo.DESCENDING)])# indexed
print posts.find().sort([("UserName",pymongo.ASCENDING),('date',pymongo.DESCENDING)]).explain()["cursor"]# Not indexed BasicCursor Query log
print posts.find().sort([("UserName",pymongo.ASCENDING),('date',pymongo.DESCENDING)]).explain()["nscanned"]# The number of records queried when the query statement is executed