Tutorial on the use of int (integer) in python3

  • 2020-05-27 06:16:01
  • OfStack

Python3 supports three different numeric types:

Integer (int) - often referred to as an integer or an integer, can be positive or negative, without a decimal point. The Python3 integer is of unlimited size and can be used as the long type, but in fact due to the limited memory of the machine, the integer we use cannot be infinite. Floating point (float) - floating point Numbers consist of integer and decimal parts. Floating point Numbers can also be represented using scientific notation (2.5e2 = 2.5 x 102 = 250). Complex number (complex) -- the complex number consists of the real part and the imaginary part, which can be represented by a + bj, or complex(a,b). The real part of the complex number, a, and the imaginary part, b, are floating point.

Let's take a closer look at int (integer) in python3.

S 24en__ (return the absolute value)


n = -5
print(n.__abs__())

# Output: 5

S 28en__ (add, operator: +)


n = 3
print(n.__add__(5))

# Output: 8

S 32en__ (by bit and operation, operator: & )


n = 5
print(n.__and__(7))

# Output: 5
# 00000110
# With the operation   
# 00000111
# Is equal to the  00000110

__bool__


# placeholder 

S 41en__ (return to itself)


n = 1234
print(n.__ceil__())

# Output: 1234

S 45en__ (return divisor and remainder)


n = 13
print(n.__divmod__(5))

# Output: (2, 3)

S 49en__ (judge if two Numbers are equal, operator: ==)


n = 5
print(n.__eq__(3))

# Output: False

S 53en__ (convert to floating point type)


n = 5
print(n.__float__())

# Output: 5.0

S 57en__ (take the integral part of the quotient, return, operator: //)


n = 9
print(n.__floordiv__(4))

# Output: 2

__floor__


# placeholder 

__format__


n = 3
print(n.__add__(5))

# Output: 8
0

__getattribute__


# placeholder 

__getnewargs__


# placeholder 

S 77en__ (judge whether or not > =)


n = 3
print(n.__add__(5))

# Output: 8
3

S 83en__ (judge whether > )


n = 3
print(n.__add__(5))

# Output: 8
4

__hash__


n = 3
print(n.__add__(5))

# Output: 8
5

__index__


n = 3
print(n.__add__(5))

# Output: 8
6

S = s = s = s = s = s = s = s = s = s = s = s


n = 3
print(n.__add__(5))

# Output: 8
7

S judge whether/whether < =)


n = 3
print(n.__add__(5))

# Output: 8
8

S 106en__ (2 base left shift operation, operator: < < )


n = 3
print(n.__add__(5))

# Output: 8
9

S judge whether/whether < )


n = 5
print(n.__lt__(3))

# # Output: False

S 119en__ (modulus - return remainder of division, operator: %)


n = 14
print(n.__mod__(3))

# Output: 2

S 123en__ (multiply, operator: *)


n = 3
print(n.__mul__(6))

# Output: 18

S = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =


n = 5
print(n.__neg__())

# Output: -5

__new__


# placeholder 

S 135en__ (judge if the two values are not equal, operator:! =)


n = 5
print(n.__ne__(3))

# Output: True

S 139en__ (by bit or operation, operator: |)


n = 5
print(n.__and__(7))

# Output: 5
# 00000110
# With the operation   
# 00000111
# Is equal to the  00000110
6

__pos__


n = 5
print(n.__and__(7))

# Output: 5
# 00000110
# With the operation   
# 00000111
# Is equal to the  00000110
7

S 147en__ (return xy [x to y])


n = 5
print(n.__and__(7))

# Output: 5
# 00000110
# With the operation   
# 00000111
# Is equal to the  00000110
8

S 154en__ (add, operator: +)


n = 5
print(n.__and__(7))

# Output: 5
# 00000110
# With the operation   
# 00000111
# Is equal to the  00000110
9

__rand__


#""" Return value&self. """

__rdivmod__


# placeholder 
1

S 166en__ (return to itself)


# placeholder 
2

S 170en__ (take the integral part of the quotient, return the quotient, operator: //)


# placeholder 
3

S 174en__ (2 base left shift operation, operator: < < )


# placeholder 
4

S 181en__ (modulus - return remainder of division, operator: %)


# placeholder 
5

S 185en__ (multiply, operator: *)


# placeholder 
6

__ror__


# placeholder 
7

__round__


# placeholder 
8

S 197en__ (return the value of yx [y to x])


n = 3
print(n.__rpow__(2))

# Output: 8

__rrshift__


n = 1234
print(n.__ceil__())

# Output: 1234
0

__rshift__


n = 1234
print(n.__ceil__())

# Output: 1234
1

__rsub__


n = 1234
print(n.__ceil__())

# Output: 1234
2

__rtruediv__


n = 1234
print(n.__ceil__())

# Output: 1234
3

__rxor__


n = 1234
print(n.__ceil__())

# Output: 1234
4

__sizeof__


n = 1234
print(n.__ceil__())

# Output: 1234
5

__str__


n = 1234
print(n.__ceil__())

# Output: 1234
6

sub (subtraction)


n = 1234
print(n.__ceil__())

# Output: 1234
7

S 236en__ (division)


n = 1234
print(n.__ceil__())

# Output: 1234
8

__trunc__


n = 1234
print(n.__ceil__())

# Output: 1234
9

S 244en__ (by bit or, operator: ^)


n = 13
print(n.__divmod__(5))

# Output: (2, 3)
0

bit_length(returns the minimum length of base 2)


n = 13
print(n.__divmod__(5))

# Output: (2, 3)
1

conjugate


n = 13
print(n.__divmod__(5))

# Output: (2, 3)
2

from_bytes


n = 13
print(n.__divmod__(5))

# Output: (2, 3)
3

to_bytes


n = 13
print(n.__divmod__(5))

# Output: (2, 3)
4

conclusion


Related articles: