C simple encryption class instance

  • 2020-05-09 19:09:47
  • OfStack


public static class EncryptAndDecrypt
     {
         // encryption 
         public static string Encrypt(string input)
         {
             //  Salt value 
             string saltValue = "saltValue";
             //  The password value 
             string pwdValue = "pwdValue";
             byte[] data = System.Text.UTF8Encoding.UTF8.GetBytes(input);
             byte[] salt = System.Text.UTF8Encoding.UTF8.GetBytes(saltValue);
             // AesManaged -  Advanced encryption standard (AES)  Symmetric algorithm management class 
             System.Security.Cryptography.AesManaged aes = new System.Security.Cryptography.AesManaged();
             // Rfc2898DeriveBytes -  Based on  HMACSHA1  The pseudorandom number generator, based on the implementation of the key derived function of the password  (PBKDF2 - 1 A key derived function based on a password )
             //  through   password   and  salt  The derived keys 
             System.Security.Cryptography.Rfc2898DeriveBytes rfc = new System.Security.Cryptography.Rfc2898DeriveBytes(pwdValue, salt);
             /**/
             /*
          * AesManaged.BlockSize -  Block size of encryption operation (unit: bit ) 
          * AesManaged.LegalBlockSizes -  Block size supported by symmetric algorithm (unit: bit ) 
          * AesManaged.KeySize -  Key size of symmetric algorithm (unit: bit ) 
          * AesManaged.LegalKeySizes -  Key size supported by symmetric algorithm (unit: bit ) 
          * AesManaged.Key -  Symmetric algorithm key 
          * AesManaged.IV -  Symmetric algorithm key size 
          * Rfc2898DeriveBytes.GetBytes(int  The number of pseudorandom key bytes that need to be generated ) -  Generate the key 
          */
             aes.BlockSize = aes.LegalBlockSizes[0].MaxSize;
             aes.KeySize = aes.LegalKeySizes[0].MaxSize;
             aes.Key = rfc.GetBytes(aes.KeySize / 8);
             aes.IV = rfc.GetBytes(aes.BlockSize / 8);
             //  With the current  Key  Properties and initialization vectors  IV  Create a symmetric encryptor object 
             System.Security.Cryptography.ICryptoTransform encryptTransform = aes.CreateEncryptor();
             //  The encrypted output stream 
             System.IO.MemoryStream encryptStream = new System.IO.MemoryStream();
             //  Encrypt the target stream ( encryptStream ) and encryption conversion ( encryptTransform Connected) 
             System.Security.Cryptography.CryptoStream encryptor = new System.Security.Cryptography.CryptoStream
                 (encryptStream, encryptTransform, System.Security.Cryptography.CryptoStreamMode.Write);
             //  will 1 A sequence of bytes is written to the current  CryptoStream  (completing the encryption process) 
             encryptor.Write(data, 0, data.Length);
             encryptor.Close();
             //  Convert the encrypted stream into a byte array and reuse it Base64 The encoding converts it to a string 
             string encryptedString = Convert.ToBase64String(encryptStream.ToArray());
             return encryptedString;
         }

 
         #region silverlight Password decryption 
         /**/
         /// <summary>
         ///  Decrypt the data 
         /// </summary>
         /// <param name="input"> The encrypted string </param>
         /// <returns> The pre-encrypted string </returns>
         public static string Decrypt(string input)
         {
             //  Salt value (as set when encrypting 1 To) 
             string saltValue = "saltValue";
             //  Password value (as set when encrypting 1 To) 
             string pwdValue = "pwdValue";
             byte[] encryptBytes = Convert.FromBase64String(input);
             byte[] salt = Encoding.UTF8.GetBytes(saltValue);
             System.Security.Cryptography.AesManaged aes = new System.Security.Cryptography.AesManaged();
             System.Security.Cryptography.Rfc2898DeriveBytes rfc = new System.Security.Cryptography.Rfc2898DeriveBytes(pwdValue, salt);
             aes.BlockSize = aes.LegalBlockSizes[0].MaxSize;
             aes.KeySize = aes.LegalKeySizes[0].MaxSize;
             aes.Key = rfc.GetBytes(aes.KeySize / 8);
             aes.IV = rfc.GetBytes(aes.BlockSize / 8);
             //  With the current  Key  Properties and initialization vectors  IV  Create a symmetric decryptor object 
             System.Security.Cryptography.ICryptoTransform decryptTransform = aes.CreateDecryptor();
             //  Decrypted output stream 
             MemoryStream decryptStream = new MemoryStream();
             //  Will decrypt the target stream ( decryptStream ) and decryption conversion ( decryptTransform Connected) 
             System.Security.Cryptography.CryptoStream decryptor = new System.Security.Cryptography.CryptoStream(
                 decryptStream, decryptTransform, System.Security.Cryptography.CryptoStreamMode.Write);
             //  will 1 A sequence of bytes is written to the current  CryptoStream  (complete the decryption process) 
             decryptor.Write(encryptBytes, 0, encryptBytes.Length);
             decryptor.Close();
             //  Converts the decrypted stream into a string 
             byte[] decryptBytes = decryptStream.ToArray();
             string decryptedString = UTF8Encoding.UTF8.GetString(decryptBytes, 0, decryptBytes.Length);
             return decryptedString;
         }
         #endregion
     }

Related articles: