C++ implementation of binary tree basic operation details

  • 2020-06-01 10:31:25
  • OfStack

Tree is an important nonlinear data structure, and two-fork tree is an important type of tree structure. This academic year's paper introduces the definition of two-fork tree, the storage structure of two-fork tree, and the related terms of two-fork tree, so as to introduce the concept of two-fork tree and lay a theoretical foundation for the basic operation of two-fork tree. The basic operation of two-fork tree mainly includes the following modules: the traversal method of two-fork tree, the calculation of the number of nodes of two-fork tree, the calculation of the number of leaf nodes of two-fork tree, and the solution of the depth of two-fork tree.

Preorder traversal (recursion & Non-recursive)

Accessing the root node The preorder accesses the left subtree The preorder accesses the right subtree

// Preorder non-recursive 
  void PrevOrder()
  {
    stack<Node*> s;
    Node *cur = _root;

    while (cur || !s.empty())
    {
      while (cur)
      {
        cout << cur->_data << " ";
        s.push(cur);
        cur = cur->_left;
      }
      // At this point, the left subtree of the current node has been traversed 
      Node *tmp = s.top();
      s.pop();
      cur = tmp->_right;
    }
    cout << endl;
  }

  // First order recursive 
  void PrevOrderR()
  {
    _PrevOrder(_root);

    cout << endl;
  }

  void _PrevOrder(Node *root)
  {
    if (root == NULL) // There must be a recursive exit!! 
      return;

    cout << root->_data << " ";
    _PrevOrder(root->_left);
    _PrevOrder(root->_right);
  }

Middle order traversal (recursion & Non-recursive)

The middle order accesses the left subtree Accessing the root node The middle order accesses the right subtree

// Middle order is not recursive 
  void InOrder()
  {
    stack<Node*> s;
    Node *cur = _root;

    while (cur || !s.empty())
    {
      while (cur)
      {
        s.push(cur);
        cur = cur->_left;
      }
      // At this point, the left subtree of the current node has been traversed 
      Node *tmp = s.top();
      cout << tmp->_data << " ";
      s.pop();
      cur = tmp->_right;
    }
    cout << endl;
  }

  // Sequence of recursion 
  void InOrderR()
  {
    _InOrder(_root);

    cout << endl;
  }

  void _InOrder(Node *root)
  {
    if (root == NULL)
      return;

    _InOrder(root->_left);
    cout << root->_data << " ";
    _InOrder(root->_right);
  }

Sequential traversal (recursion & Non-recursive)


  // Postorder is not recursive 
  // Postorder traversal can be a dead loop, so record the front 1 The number of visited nodes 
  void PostOrder()
  {
    stack<Node*> s;
    Node *cur = _root;
    Node *prev = NULL;

    while (cur || !s.empty())
    {
      while (cur)
      {
        s.push(cur);
        cur = cur->_left;
      }
      Node *tmp = s.top();
      if (tmp->_right && tmp->_right != prev)
      {
        cur = tmp->_right;
      }
      else
      {
        cout << tmp->_data << " ";
        prev = tmp;
        s.pop();
      }
    }
    cout << endl;
  }

  // After the sequence of recursion 
  void PostOrderR()
  {
    _PostOrder(_root);

    cout << endl;
  }

  void _PostOrder(Node *root)
  {
    if (root == NULL)
      return;

    _PostOrder(root->_left);
    _PostOrder(root->_right);
    cout << root->_data << " ";
  }

Sequence traversal

Start at the root node and visit each layer in turn.
Take advantage of the first-in, first-out nature of queues to queue each layer from left to right.


 void LevelOrder() // Use the queue!! 
  {
    queue<Node*> q;
    Node *front = NULL;

    //1.push The root node 
    if (_root)  
    {
      q.push(_root);
    }
    //2. Traversing the current node, push The left and right children of the current node, pop The current node 
    //3. Walk through the left child of the current node, walk through the right child again, and loop until the queue is empty 
    while (!q.empty())
    {

      front = q.front();
      cout << front->_data << " ";

      if (front->_left)
        q.push(front->_left);
      if (front->_right)
        q.push(front->_right);

      q.pop();
    }

    cout << endl;
  }

Find the height of the two trees


  size_t Depth()
  {
    return _Depth(_root);
  }

  size_t _Depth(Node *root)
  {
    if (root == NULL)
      return 0;
    else if (root->_left == NULL && root->_right == NULL)
      return 1;
    else
    {
      size_t leftDepth = _Depth(root->_left) + 1;
      size_t rightDepth = _Depth(root->_right) + 1;
      return leftDepth > rightDepth ? leftDepth : rightDepth;
    }
  }

Find the number of leaf nodes


size_t LeafSize()
  {
    return _LeafSize(_root);
  }

  size_t _LeafSize(Node *root)
  {
    if (root == NULL)
      return 0;
    else if (root->_left == NULL && root->_right == NULL)
      return 1;
    else
      return _LeafSize(root->_left) + _LeafSize(root->_right);
  }

Find the number of nodes in the k layer of the two-fork tree


size_t GetKLevel(int k)
  {
    return _GetKLevel(_root, k);
  }

  size_t _GetKLevel(Node *root, int k)
  {
    if (root == NULL)
      return 0;
    else if (k == 1)
      return 1;
    else
      return _GetKLevel(root->_left, k - 1) + _GetKLevel(root->_right, k - 1);
  }

The complete code is as follows:


template<class T>
struct BinaryTreeNode
{
  T _data;
  BinaryTreeNode *_left;
  BinaryTreeNode *_right;

  BinaryTreeNode(const T& d)
    :_data(d)
    , _left(NULL)
    , _right(NULL)
  {}
};

template<class T>
class BinaryTree
{
public:
  typedef BinaryTreeNode<T> Node;

  BinaryTree()
    :_root(NULL)
  {}

  BinaryTree(T *arr, size_t n, const T& invalid)
  {
    size_t index = 0;
    _root = _CreateBinaryTree(arr, n, invalid, index);
  }

  BinaryTree(const BinaryTree<T>& t)
    :_root(NULL)
  {
    _root = _CopyTree(t._root);
  }

  BinaryTree<T>& operator=(const BinaryTree<T>& t)
  {
    if (this != t)
    {
      Node *tmp = new Node(t._root);
      if (tmp != NULL)
      {
        delete _root;
        _root = tmp;
      }
    }
    return *this;
  }

  ~BinaryTree()
  {
    _DestroyTree(_root);
    cout << endl;
  }

  // Preorder non-recursive 
  void PrevOrder()
  {
    stack<Node*> s;
    Node *cur = _root;

    while (cur || !s.empty())
    {
      while (cur)
      {
        cout << cur->_data << " ";
        s.push(cur);
        cur = cur->_left;
      }
      // At this point, the left subtree of the current node has been traversed 
      Node *tmp = s.top();
      s.pop();
      cur = tmp->_right;
    }
    cout << endl;
  }

  // First order recursive 
  void PrevOrderR()
  {
    _PrevOrder(_root);

    cout << endl;
  }

  // Middle order is not recursive 
  void InOrder()
  {
    stack<Node*> s;
    Node *cur = _root;

    while (cur || !s.empty())
    {
      while (cur)
      {
        s.push(cur);
        cur = cur->_left;
      }
      // At this point, the left subtree of the current node has been traversed 
      Node *tmp = s.top();
      cout << tmp->_data << " ";
      s.pop();
      cur = tmp->_right;
    }
    cout << endl;
  }

  // Sequence of recursion 
  void InOrderR()
  {
    _InOrder(_root);

    cout << endl;
  }

  // Postorder is not recursive 
  // Postorder traversal can be a dead loop, so record the front 1 The number of visited nodes 
  void PostOrder()
  {
    stack<Node*> s;
    Node *cur = _root;
    Node *prev = NULL;

    while (cur || !s.empty())
    {
      while (cur)
      {
        s.push(cur);
        cur = cur->_left;
      }
      Node *tmp = s.top();
      if (tmp->_right && tmp->_right != prev)
      {
        cur = tmp->_right;
      }
      else
      {
        cout << tmp->_data << " ";
        prev = tmp;
        s.pop();
      }
    }
    cout << endl;
  }

  // After the sequence of recursion 
  void PostOrderR()
  {
    _PostOrder(_root);

    cout << endl;
  }

  void LevelOrder() // Use the queue!! 
  {
    queue<Node*> q;
    Node *front = NULL;

    //1.push The root node 
    if (_root)  
    {
      q.push(_root);
    }
    //2. Traversing the current node, push The left and right children of the current node, pop The current node 
    //3. Walk through the left child of the current node, walk through the right child again, and loop until the queue is empty 
    while (!q.empty())
    {

      front = q.front();
      cout << front->_data << " ";

      if (front->_left)
        q.push(front->_left);
      if (front->_right)
        q.push(front->_right);

      q.pop();
    }

    cout << endl;
  }

  size_t Size()
  {
    return _Size(_root);
  }

  size_t LeafSize()
  {
    return _LeafSize(_root);
  }

  size_t GetKLevel(int k)
  {
    return _GetKLevel(_root, k);
  }

  size_t Depth()
  {
    return _Depth(_root);
  }

  Node* Find(const T& d)
  {
    return _Find(_root, d);
  }

protected:
  Node* _CreateBinaryTree(T *arr, size_t n, const T& invalid, size_t& index)
  {
    Node *root = NULL;
    if (index < n && arr[index] != invalid)
    {
      root = new Node(arr[index]);
      index++;
      root->_left = _CreateBinaryTree(arr, n, invalid, index);
      index++;
      root->_right = _CreateBinaryTree(arr, n, invalid, index);
    }
    return root;
  }

  Node* _CopyTree(Node *root)
  {
    Node *newRoot = NULL;

    if (root)
    {
      newRoot = new Node(root->_data);
      newRoot->_left = _CopyTree(root->_left);
      newRoot->_right = _CopyTree(root->_right);
    }

    return newRoot;
  }

  void _DestroyTree(Node *root)
  {
    if (root)
    {
      _Destroy(root->_left);
      _Destroy(root->_right);
      delete root;
    }
  }

  void _PrevOrder(Node *root)
  {
    if (root == NULL) // There must be a recursive exit!! 
      return;

    cout << root->_data << " ";
    _PrevOrder(root->_left);
    _PrevOrder(root->_right);
  }

  void _InOrder(Node *root)
  {
    if (root == NULL)
      return;

    _InOrder(root->_left);
    cout << root->_data << " ";
    _InOrder(root->_right);
  }

  void _PostOrder(Node *root)
  {
    if (root == NULL)
      return;

    _PostOrder(root->_left);
    _PostOrder(root->_right);
    cout << root->_data << " ";
  }

  size_t _Size(Node *root)
  {
    if (root == NULL)
      return 0;
    else
      return _Size(root->_left) + _Size(root->_right) + 1;
  }

  size_t _LeafSize(Node *root)
  {
    if (root == NULL)
      return 0;
    else if (root->_left == NULL && root->_right == NULL)
      return 1;
    else
      return _LeafSize(root->_left) + _LeafSize(root->_right);
  }

  size_t _GetKLevel(Node *root, int k)
  {
    if (root == NULL)
      return 0;
    else if (k == 1)
      return 1;
    else
      return _GetKLevel(root->_left, k - 1) + _GetKLevel(root->_right, k - 1);
  }

  size_t _Depth(Node *root)
  {
    if (root == NULL)
      return 0;
    else if (root->_left == NULL && root->_right == NULL)
      return 1;
    else
    {
      size_t leftDepth = _Depth(root->_left) + 1;
      size_t rightDepth = _Depth(root->_right) + 1;
      return leftDepth > rightDepth ? leftDepth : rightDepth;
    }
  }

  Node* _Find(Node *root, const T& d)
  {
    if (root == NULL)
      return NULL;
    else if (root->_data == d)
      return root;
    else if (Node *ret = _Find(root->_left, d))
      return ret;
    else
      _Find(root->_right, d);
  }

protected:
  Node *_root;
};


Related articles: