bmp zoom code of BMP bitmap zoom in and out arbitrarily

  • 2020-05-09 19:03:06
  • OfStack

A few days ago, I encountered the need to zoom the bmp bitmap.

Call API function, although it can achieve bitmap zoom, but it has a good effect on the zoom, zoom will cause distortion, there are flowers on the image, it is difficult to accept

, because I have learned yi language before, and yi language has 1 code, which has a very good effect on the image scaling of bmp.

Yesterday, I took the time to translate it into c++ code.

This section is to scale the width:


void __stdcall bmpsetH(unsigned char *bitmap,int h,unsigned char *bitmap2)
{
int i,j,k,bitmapH1,bitmapH2,bitmapV1,bitmapV2,bitmapSize1,bitmapSize2,bitmapLen1,bitmapLen2;
int startH1,startH2,R,G,B,R1,G1,B1;	
// 	 Bitmap width 1  =   Fetch byte set data  ( The bitmap data , # integer , 19)
bitmapH1=*((int*)(bitmap+18));
  bitmapV1=*((int*)(bitmap+22));
  int redress1=bitmapH1%4;
  int bitmapNH1=bitmapH1*3+redress1;
  bitmapLen1=bitmapNH1*bitmapV1;
  bitmapSize1=bitmapLen1+54;
  int redress2=h%4;
  int bitmapNH2=h*3+redress2;
  bitmapLen2=bitmapNH2*bitmapV1;
  bitmapSize2=bitmapLen2+54;
  memcpy(bitmap2,bitmap,54);
  memcpy(bitmap2+2,&bitmapSize2,4);
  memcpy(bitmap2+18,&h,4);
  double Hval=(double)bitmapH1/h;
  double Hvala=0;
  int Hvalb=0,Hvalc=0;
  for (i=1;i<=bitmapV1;i++)
  {
  startH2=bitmapSize2-i*bitmapNH2;
  startH1=bitmapSize1-i*bitmapNH1;
    B1=bitmap[startH1];
  G1=bitmap[startH1+1];
  R1=bitmap[startH1+2];
  for(j=1;j<=h;j++)
  {
  startH2=startH2+3;
      Hvala=Hvala+Hval;
  if (Hvala<1)
  {
       Hvalb=3;
  }
  else
  {
  Hvalc=Hvala;
  Hvalb=Hvalc*3;
  }
  startH1=bitmapSize1-i*bitmapNH1+Hvalb;
  B=(bitmap[startH1-3]+B1)/2;
  G=(bitmap[startH1-2]+G1)/2;
  R=(bitmap[startH1-1]+R1)/2;
  bitmap2[startH2-3]=B;
  bitmap2[startH2-2]=G;
  bitmap2[startH2-1]=R;
  B1=bitmap[startH1-3];
  G1=bitmap[startH1-2];
  R1=bitmap[startH1-1];

  }
   Hvala=0;
  }

}

This section is to scale the height:


void BmpSetV(unsigned char *bitmap,int v,unsigned char *bitmap2)
{	

double Vval,Vvala=0;
  int i,j,Vvalb=0,bitH1,bitNH1,bitV1,redress,bitLen1,bitsize1,bitLen2,bitsize2;
int start3=0,start2=0,start1=0,G1,B1,R1,R,G,B;
  bitH1=*((int*)(bitmap+18));
bitV1=*((int*)(bitmap+22));
redress=bitH1%4;
bitNH1=bitH1*3+redress;
bitLen1=bitNH1*bitV1;
bitsize1=bitLen1+54;
bitLen2=bitNH1*v;
bitsize2=bitLen2+54;
memcpy(bitmap2,bitmap,54);
memcpy(bitmap2+2,&bitsize2,4);
memcpy(bitmap2+22,&v,4);
Vval=bitV1/(double)v;
for (i=1;i<=bitH1;i++)
{
     start3=bitsize1-bitNH1+i*3;
 B1=bitmap[start3-3];
 G1=bitmap[start3-2];
 R1=bitmap[start3-1];
 for (j=1;j<=v;j++)
 {
 Vvala=Vvala+Vval;
 if (Vvala<1)Vvalb=1;
 else Vvalb=Vvala;
 start2=bitsize2-j*bitNH1+i*3;
 start1=bitsize1-Vvalb*bitNH1+i*3;
 if (Vvalb<bitV1)
 {
 start3=bitsize1-Vvalb*bitNH1-bitNH1+i*3;
 if(i==1)
 {
          bitmap2[start2-3]=bitmap[start1-3];
  bitmap2[start2-2]=bitmap[start1-2];
bitmap2[start2-1]=bitmap[start1-1];
 }
 else
 {
 B=(B1+bitmap[start1-3])/2;
 G=(G1+bitmap[start1-2])/2;
 R=(R1+bitmap[start1-1])/2;
 bitmap2[start2-3]=B;
 bitmap2[start2-2]=G;
 bitmap2[start2-1]=R;
 B1=bitmap[start3-3];
 G1=bitmap[start3-2];
 R1=bitmap[start3-1];
 }
 }
 else
 {
          bitmap2[start2-3]=bitmap[start1-3];
          bitmap2[start2-2]=bitmap[start1-2];
bitmap2[start2-1]=bitmap[start1-1];
 }


 }
 Vvala=0;
}

}

Example:


int main(int argc, char* argv[])
{
  unsigned char *bmp,*bmp2;
bmp=(unsigned char*)malloc(1244214);
bmp2=(unsigned char*)malloc(1244214);
FILE *fp=fopen("D:\\ Boot screen .bmp","rb");
fread(bmp,1,304182,fp);

fclose(fp);
  //bmpsetH(bmp,720,bmp2);
  // memcpy(bmp,bmp2,1244214);
BmpSetV(bmp,290,bmp2);
  fp=fopen("D:\\ boot .bmp","wb");
fwrite(bmp2,1,1244214,fp);

fclose(fp);
  free(bmp);
free(bmp2);
return 0;
}

It's not easy to see this, but here's a site where you can share another piece of code


// suofang.cpp :  Define the entry point for the console application. 
//

#include "stdafx.h"
#include 

struct header{
  short BM;
  unsigned int filesize;
  unsigned int recv;
  unsigned int offset;
  unsigned int bitmapheadlong;
  unsigned int bitmapwith;
  unsigned int bitmaphight;
  short bitmappageinfo;
  short bitperpixel;
  unsigned int compress;
  unsigned int bitmapsize;
  unsigned int levelresolution;
  unsigned int verticalresolution;
  unsigned int colourmap;
  unsigned int colourmapsize;
}bitmapheader;
#if 0
  typedef struct tagBITMAPFILEHEADER
  {
  WORD bfType; //  Bitmap file type, must be BM(0-1 byte )
  DWORD bfSize; //  The size of a bitmap file in bytes (2-5 byte )
  WORD bfReserved1; //  Bitmap file reserved word, must be 0(6-7 byte )
  WORD bfReserved2; //  Bitmap file reserved word, must be 0(8-9 byte )
  DWORD bfOffBits; //  The starting position of a bitmap data relative to a bitmap (10-13 byte )
  //  The offset of the file header is represented in bytes 
  } BITMAPFILEHEADER; 

 typedef struct tagBITMAPINFOHEADER{
  DWORD biSize; //  The number of bytes consumed by this structure (14-17 byte )
  LONG biWidth; //  The width of a bitmap in pixels (18-21 byte )
  LONG biHeight; //  The height of a bitmap in pixels (22-25 byte )
  WORD biPlanes; //  The level of the target device must be 1(26-27 byte )
  WORD biBitCount;//  The number of bits required per pixel must be 1( Double color ),(28-29 byte )
  // 4(16 color ) . 8(256 color ) or 24( True color ) the 1
  DWORD biCompression; //  Bitmap compression type, must be  0( Without compression ),(30-33 byte )
  // 1(BI_RLE8 The compression type ) or 2(BI_RLE4 The compression type ) the 1
  DWORD biSizeImage; //  The size of a bitmap in bytes (34-37 byte )
  LONG biXPelsPerMeter; //  Bitmap horizontal resolution, number of pixels per meter (38-41 byte )
  LONG biYPelsPerMeter; //  Bitmap vertical resolution, number of pixels per meter (42-45 byte )
  DWORD biClrUsed;//  The number of colors in the actual color table used by the bitmap (46-49 byte )
  DWORD biClrImportant;//  A bitmap shows the number of important colors in the process (50-53 byte )
  } BITMAPINFOHEADER;

  typedef struct tagRGBQUAD {
  BYTE rgbBlue;//  The brightness of blue ( Range of values for 0-255)
  BYTE rgbGreen; //  The brightness of green ( Range of values for 0-255)
  BYTE rgbRed; //  The brightness of red ( Range of values for 0-255)
  BYTE rgbReserved;//  Reservations must be made 0
  } RGBQUAD; 
#endif
void scale(int srcwith,int srcheight,int destwith,int destheight)
{
  
}
int _tmain(int argc, _TCHAR* argv[4000000])
{
  BITMAPFILEHEADER bmfHdr; 
  BITMAPINFOHEADER bi,bi1;  
  CFile file("d:\\pic1.bmp",CFile::modeRead);
  file.Read(&bmfHdr, sizeof(BITMAPFILEHEADER)); 
  file.Read(&bi,sizeof(BITMAPINFOHEADER));
  DWORD dwSize = (bi.biWidth*bi.biBitCount+31)/32*4*bi.biHeight; 
  PBYTE pBuf = new BYTE[dwSize]; 
  file.Read(pBuf,dwSize); 
  file.Close(); 

  /////////////////////////////////////////////////////////////////////////
  file.Open("d:\\tmp1.bmp",CFile::modeCreate|CFile::modeReadWrite); 
  memcpy(&bi1,&bi, sizeof(BITMAPINFOHEADER)); 
  bi1.biWidth = 4000; //400->200 ,718->359
  bi1.biHeight = 4000; //266->133,397->794
  DWORD dwSize1 = (bi1.biWidth * bi1.biBitCount + 31)/32*4*bi1.biHeight; 
  PBYTE pBuf1 = new BYTE[dwSize1]; 
  BYTE *pSrc,*pDest; 

  //ofstream file1("D:\\tmp.log");

#if 0
/////////////////////////////////// Nearest neighbor value sampling method (fast) ////////////////////////////////////////////////
  float m_xscale,m_yscale;
  m_xscale = (float)bi.biWidth/(float)bi1.biWidth;
  m_yscale = (float)bi.biHeight/(float)bi1.biHeight;
  unsigned long k=0;
  for(int y = 0; y  {
    for(int x=0; x    {
      pSrc = pBuf+(int)(y*m_yscale)*bi.biWidth*3+(int)(x*m_xscale)*3;
      pDest = pBuf1+(int)(y*bi1.biWidth*3+x*3);
      memcpy(pDest,pSrc,3);
      //*(unsigned long*)pDest=k++;
      //*(unsigned long*)pDest=0x000000ff;
    }
  }
//////////////////////////////////// End of the zoom ///////////////////////////////////////////////
#endif

#if 1
///////////////////////////////////// Bilinear interpolation (optimized) /////////////////////////////////////////////////////
  int sw = bi.biWidth - 1, sh = bi.biHeight - 1, dw = bi1.biWidth - 1, dh = bi1.biHeight - 1;    // Source image width, target image width 
  int B, N, x, y;                                          // The calculated target point corresponds to the abscissa of the floating point number in the source image N And the vertical B, Target integer abscissa x And the vertical y
  int nPixelSize = bi.biBitCount/8;          // Pixel size 
  BYTE * pLinePrev, *pLineNext;            // The row in the source image starts with coordinates and down 1 Line start coordinates 
  //BYTE * pDest;
  BYTE * pA, *pB, *pC, *pD;              // The closest in the source image 4 A point 
  for ( int i = 0; i <= dh; ++i )      // Increasing height 
  {
    pDest = ( BYTE * )(pBuf1+bi1.biWidth*i*nPixelSize);
    y = i * sh / dh;
    N = dh - i * sh % dh;
    pLinePrev = ( BYTE * )(pBuf+bi.biWidth*y*nPixelSize);
    y++;
    pLineNext = ( N == dh ) ? pLinePrev : ( BYTE * )(pBuf+bi.biWidth*y*nPixelSize);
    for ( int j = 0; j <= dw; ++j )    // Increasing the width of the 
    {
      x = j * sw / dw * nPixelSize;
      B = dw - j * sw % dw;
      pA = pLinePrev + x;
      pB = pA + nPixelSize;
      pC = pLineNext + x;
      pD = pC + nPixelSize;
      if ( B == dw )
      {
        pB = pA;
        pD = pC;
      }
      for ( int k = 0; k < nPixelSize; ++k )
        *pDest++ = ( BYTE )( int )(
          ( B * N * ( *pA++ - *pB - *pC + *pD ) + dw * N * *pB++
          + dh * B * *pC++ + ( dw * dh - dh * B - dw * N ) * *pD++
          + dw * dh / 2 ) / (double)( dw * dh )
        );
    }
  }
#endif

file.Write(&bmfHdr,sizeof(BITMAPFILEHEADER)); 
file.Write(&bi1,sizeof(BITMAPINFOHEADER)); 
file.Write(pBuf1,dwSize1); 
file.Close(); 
//==release p memory==
delete pBuf;
pBuf = NULL;
delete pBuf1;
pBuf1 = NULL;
//==release p memory===
if (pDest!=NULL)
{
pDest = NULL;
}
//if (pSrc!=NULL)
//{
//pSrc = NULL;
//}
//////////////////////////////////////////////////////////////
//MessageBox("Test successful","Info",MB_OKCANCEL);

  return 0;
}


Related articles: